Constructible hierarchy: Difference between revisions

Jump to navigation Jump to search
(How is the reflection principle stated for general cumulative hierarchies?)
Line 12:
Note that this is a cumulative hierarchy, and thus the [[reflection principle]] applies.{{citation needed}}
 
This is always contained in the respective rank of the von Neumann hierarchy: \(L_\alpha \subseteq V_\alpha\). This can be shown by a transfinite induction argument. It initially completely actually agrees with \(V\): all subsets of a finite set are definable, therefore \(L_\alpha = V_\alpha\) for \(\alpha \leq \omega\). However, while \(V_{\omega+1}\) is uncountable, there are (as we mentioned) only countably many subsets of a countable subset, and thus \(L_{\omega+1}\) is countable and a proper subset of \(V_{\omega+1}\). In general, \(|L_\alpha| = |\alpha|\) for \(\alpha \geq \omega\).<ref>Most set theory texts</ref>
 
If \(\kappa = \beth_\kappa\), then \(|L_\kappa| = |V_\kappa|\). However, the existence of a \(\kappa > \omega\) so that \(L_\kappa = V_\kappa\) (they're equal, not just equinumerous) is independent from the axioms of \(\mathrm{ZFC}\), if they're consistent. This is because some models of \(\mathrm{ZFC}\) think it's true, and others think it's false, thus the completeness theorem applies.
 
160

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.

Navigation menu