Reflection principle

From Apeirology Wiki
Revision as of 17:15, 30 August 2023 by RhubarbJayde (talk | contribs) (Created page with "The reflection principle is the assertion that properties of the universe of all sets are "reflected" down to a smaller set. Formally, for every formula \(\varphi\) and set \(N\), there is some limit ordinal \(\alpha\) so that, for all \(N \subseteq V_\alpha\), \(x_0, x_1, \cdots, x_n \in V_\alpha\), \(\varphi(x_0, x_1, \cdots, x_n)\) is true in \(V_\alpha\) iff it is really true. This may be considered a guarantee of the existence (be it mathematical or metaphysical) of...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The reflection principle is the assertion that properties of the universe of all sets are "reflected" down to a smaller set. Formally, for every formula \(\varphi\) and set \(N\), there is some limit ordinal \(\alpha\) so that, for all \(N \subseteq V_\alpha\), \(x_0, x_1, \cdots, x_n \in V_\alpha\), \(\varphi(x_0, x_1, \cdots, x_n)\) is true in \(V_\alpha\) iff it is really true. This may be considered a guarantee of the existence (be it mathematical or metaphysical) of Cantor's Absolute, however, this is actually provable in \(\mathrm{ZF}\), rather than being a candidate for a large cardinal axiom or other new powerful axiom for set theory.

Azriel Levy proved both the truth of the reflection principle, over \(\mathrm{ZF}\), and that the truth predicate for \(\Sigma_n\)-formulae is \(\Sigma_{n+1}\), implying we can find a club of cardinals \(\kappa\) so that each \(V_\kappa\) is a \(\Sigma_n\)-elementary substructure of \(V\) - such cardinals are called \(\Sigma_n\)-correct.

An even more general form of the reflection principle is as follows. Say a cumulative hierarchy is a family of sets \(W_\alpha\) indexed by ordinals is a cumulative hierarchy if, for all \(\alpha\), we have \(W_\alpha \subseteq W_{\alpha+1} \subseteq \mathcal{P}(W_\alpha)\); and for all limit ordinals \(\lambda\), \(W_\lambda = \bigcup_{\alpha < \lambda} W_\alpha\). Let \(W = \bigcup_{\alpha \in \mathrm{Ord}} W_\alpha\). Then, for every formula \(\varphi\), there are arbitrarily large \(\alpha\) so that, for all \(x_0, x_1, \cdots, x_n \in W_\alpha\), \(\varphi(x_0, x_1, \cdots, x_n)\) is true in \(W_\alpha\) iff it is true in \(W\).

This can be used to show there are arbitrarily large stable ordinals, for example.