List of ordinals

From Apeirology Wiki
Revision as of 18:14, 29 August 2023 by RhubarbJayde (talk | contribs)
Jump to navigation Jump to search

Countable ordinals

In this list we assume there is a transitive model of ZFC. The \(\psi\) is Extended Buchholz unless specified.

  • 0, the smallest ordinal
  • 1, the first successor ordinal
  • \( \omega \), the first limit ordinal
  • \( \omega^{2} \), the second infinite additive principal ordinal
  • \( \omega^{3} \)
  • \( \omega^{\omega} \)
  • \( \psi_{0}(\Omega) = \varphi(1,0) = \varepsilon_{0} \), the PTO of PA and ACA0(sort out page)
  • \( \psi_{0}(\Omega^{2}) = \varphi(2,0) = \zeta_{0} \)(decide if own page)
  • \( \psi_{0}(\Omega^{\omega}) = \varphi(\omega,0) \), the second infinite primitive recursively principal ordinal
  • \( \psi_{0}(\Omega^{\Omega}) = \varphi(1,0,0) = \Gamma_{0} \), the Feferman-Schutte ordinal and the PTO of ATR0
  • \( \psi_{0}(\Omega^{\Omega^{2}}) = \varphi(1,0,0,0) \), the Ackermann Ordinal(decide if keep)
  • \( \psi_{0}(\Omega^{\Omega^{\omega}}) = \varphi\begin{pmatrix}1 \\ \omega\end{pmatrix} \), the SVO (Small Veblen ordinal)
  • \( \psi_{0}(\Omega^{\Omega^{\Omega}}) \), the LVO (Large Veblen ordinal)
  • \( \psi_{0}(\Omega_{2}) \), the BHO (Bachmann-Howard ordinal)
  • \( \psi_{0}(\Omega_{\omega}) \), the BO (Buchholz ordinal) and the PTO of \( \Pi^1_1 \)-comprehension
  • \( \psi_{0}(\varepsilon_{\Omega_{\omega} + 1}) \), the TFBO (Takeuti-Feferman-Buchholz ordinal) and the PTO of \( \Pi^1_1 \)-comprehension with bar induction
  • \( \psi_{0}(\Omega_\Omega) \), sometimes known as Bird's ordinal
  • \( \psi_{0}(\Omega_{\Omega_{\dots}}) \), the EBO (Extended Buchholz ordinal) and the PTO of \( \Pi^1_1 \)-transfinite recursion
  • \( \psi_{\Omega}(\varepsilon_{\chi_1(0)+1}) \), the PTO of KPi or \( \Delta^1_2 \)-comprehension with transfinite induction (in Rathjen's Mahlo OCF, also applies to the one below)
  • \( \psi_{\Omega}(\psi_{\chi_{\varepsilon_{M+1}}(0)}(0)) \), the PTO of KPM
  • \( \Psi^{0}_{\Omega}(\varepsilon_{K+1}) \), the PTO of KP+\(\Pi_{3}\)-refl. (in Rathjen's weakly compact OCF)
  • \( \psi_\Omega(\varepsilon_{\mathbb{K}+1}) \), the PTO of KP with a \( \Pi_{\mathbb{N}}\)-refl. universe under ZF + V = L
  • \( \Psi_{\mathbb{X}}^{\varepsilon_{\Upsilon+1}} \) where \( \mathbb{X} = (\omega^+; \textsf{P}_0; \epsilon; \epsilon; 0) \), the limit of Jan-Carl Stegert's second OCF using indescribable cardinals
  • PTO of \( \Pi^1_2 \)-comprehension
  • PTO of \( \text{Z}_{2} \) = PTO of \(\mathrm{ZFC}\) minus powerset
  • PTO of \( \text{KP} + "\omega_1 \) exists \( " \)
  • PTO of \( \text{ZFC} \)
  • \( \omega^{\text{CK}}_{1} \), the Church-Kleene ordinal, i.e. the least ordinal which is not recursive and the second admissible ordinal
  • \( \omega^{\text{CK}}_{\omega} \), the least limit of admissible ordinals = the least height of a model of \( \Pi^1_1 \)-comprehension
  • The least recursively inaccessible ordinal = the least height of a model of \( \textsf{KPi} \) or \( \Delta^1_2 \)-comprehension[1](p.3)
  • The least recursively Mahlo ordinal = the least doubly \( \Pi_2 \)-reflecting ordinal = the least height of a model of \( \textsf{KPM} \)[1](p.3)
  • The least recursively hyper-Mahlo ordinal[2](p.13)
  • The least \( \Pi_n \)-reflecting ordinals, for \( 2<n<\omega \)[2]
  • The least \( (+1) \)-stable ordinal[1](p.4)
  • The least \( (+\alpha) \)-stable ordinal, for small \(\alpha\)
  • The least \( (\cdot 2) \)-stable ordinal
  • The least \( (^+) \)-stable ordinal = the least \( \Pi^1_1 \)-reflecting ordinal[1](p.4)
  • The least ordinal that is \( \Pi^1_1 \)-reflecting on the \( \Pi^1_1 \)-reflecting ordinals[3]
  • The least \( \Sigma^1_1 \)-reflecting ordinal = the least non-Gandy ordinal[3](pp.3,9)[1]
  • The \( (\sigma^1_1)^n \)-reflecting ordinals for \( 1<n<\omega \)[3](p.20)
  • The least \( (^++1) \)-stable ordinal(Is this strictly greater than previous entry?)[3](p.20)
  • The least (next recursively inaccessible ordinal)-stable ordinal
  • The least (next recursively Mahlo ordinal)-stable ordinal
  • The least (next \( \Pi_n \)-reflecting ordinal)-stable ordnal, for \( 2<n<\omega \)
  • The least doubly \( (+1) \)-stable ordinal[1](p.4)
  • The least \(\omega\)-ply stable ordinal = the least ordinal stable up to a nonprojectible ordinal
  • The least nonprojectible ordinal[1](p.5) = the least ordinal \( \Pi_2 \)-reflecting on the ordinals stable up to it = the least limit of \(\omega\)-ply stable ordinals[4](p.218)
  • The least \( \Sigma_2 \)-admissible ordinal[1](pp.5-6) = least ordinal \( \Pi_3 \)-reflecting on the ordinals stable up to it[4](p.221)
  • HIGHER STABILITY STUFF GOES HERE(sort out)
  • Some Welch stuff here
  • Infinite time Turing machine ordinals
    • \( \lambda \), the supremum of all writable ordinals = the least ordinal stable up to \( \zeta \) ordinal
    • \( \gamma \), the supremum of all clockable ordinals, equal to \( \lambda \)
    • \( \zeta \), the supremum of all eventually writable ordinals = the least \( \Sigma_2 \)-extendible ordinal
    • \( \Sigma \), the supremum of all accidentally writable ordinals = the least target of \( \Sigma_2 \)-stability
  • The least ordinal in \(E_\eta\), for \(\eta > 0\)[5]
  • The least admissible \(\alpha\) so that \(L_\alpha\) satisfies arithmetically quasi-induction = the least admissible \(\alpha\) so that, for all \(x \in \mathcal{P}(\omega) \cap L_\alpha\), there are \(\xi, \sigma < \alpha\) so that \(L_\xi[x] \prec_{\Sigma_2} L_\sigma[x]\)[5]
  • Least \(\beta\) where \(L_\beta\) starts a chain of \(\Sigma_3\)-elementary substructures [5]
  • The smallest gap ordinal[6] = the least simultaneously \(\Sigma_n\)-nonprojectible ordinal for all \(n\)[7]
  • Least start of a gap in the constructible universe of length 2[6]
  • Least \( \beta \) that starts a gap of length \( \beta \)[6]
  • Least \( \beta \) that starts gap of length \( \beta^\beta \)[6]
  • Least \( \beta \) that starts gap of length \( \beta^+ \) = least height of model of KP+"\( \omega_1 \) exists".[1](p.6) [8]
  • Least start of third-order gap = least height of model of \( ZFC^- \)+"\( \beth_1 \) exists"[1](p.6)
  • Least height of model of ZFC[1](p.6)
  • Least stable ordinal[1](p.6)[9](p.9), this is a limit of gap ordinals[10]
  • Least stable ordinal that's also during a gap - height of least \( \beta_2 \)-model of \( Z_2 \)[10]
  • The least non-analytical ordinal. This is the least \( \alpha \) such that \( L_\alpha \prec L_{\omega_1} \).[9](p.8)


The least ordinal \(\alpha\) so that \(\alpha\) is uncountable in \(L\) is equal to the least ordinal which starts a gap of length \(\omega_1\). If \(V = L\), then this is greater than all ordinals on this list and equal to \(\Omega\), while if \(0^\sharp\) exists it is significantly smaller than \(\omega_1\), however would still be greater than the least height of a model of KP+"\( \omega_1 \) exists".

Uncountable ordinals

Further on, there lie large cardinals, so big that their existence is unprovable, but which are useful if they do exist:

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 D. Madore, A Zoo of Ordinals (2017). Accessed 7 September 2022.
  2. 2.0 2.1 W. Richter, P. Aczel, [https://www.duo.uio.no/handle/10852/44063 Inductive Definitions and Reflecting Properties of Admissible Ordinals] (1973, preprint, Universitetet i Oslo). Accessed 7 September 2022.
  3. 3.0 3.1 3.2 3.3 J. P. Aguilera, The Order of Reflection (2019, arxiv preprint). Accessed 7 September 2022.
  4. 4.0 4.1 E. Kranakis, [https://www.sciencedirect.com/science/article/pii/0003484382900225 Reflection and Partition Properties of Admissible Ordinals] (1980). Accessed 7 September 2022.
  5. 5.0 5.1 5.2 P. D. Welch, Weak Systems of Determinacy and Arithmetical Quasi-Inductive Definitions (April 2010 draft). Accessed 11 January 2023.
  6. 6.0 6.1 6.2 6.3 W. Marek, M. Srebrny, Gaps in the Constructible Universe (1973). Accessed 7 September 2022.
  7. The Higher Infinite in Proof Theory, Michael Rathjen
  8. T. Arai, A Sneak Preview of Proof Theory of Ordinals (1997, preprint, p.17). Accessed 7 September 2022.
  9. 9.0 9.1 W. Marek, K. Rasmussen, Spectrum of L
  10. 10.0 10.1 W. Marek, Stable sets, a characterization of \( \beta_2 \)-models of full second order arithmetic and some related facts (1974, Fundamenta Mathematicae 82(2), pp.175-189). Accessed 7 September 2022.