Reflection principle: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
No edit summary
Line 18: Line 18:
As a result, if it is assumed that \(V\) "should" satisfy reflection, if one wants to generate "true" large cardinal axioms, a good place to start is by using reflection of \(V\) to guarantee existence of sets with strong reflective properties. Reinhardt gives the following example:<ref>W. N. Reinhardt, "[https://canvas.eee.uci.edu/courses/8140/files/2966398/download?verifier=2cFyXQWmyjg7qKTxIbBasupeSVEkZQZJaE1yGkWz&download_frd=1 Remarks on reflection principles, large cardinals, and elementary embeddings]". In ''Axiomatic Set Theory, Part 2'' (1974), edited by T. Jech, ISBN 978-0-8218-9298-5. MathSciNet ID [https://mathscinet.ams.org/mathscinet/relay-station?mr=0401475 0401475].</ref>
As a result, if it is assumed that \(V\) "should" satisfy reflection, if one wants to generate "true" large cardinal axioms, a good place to start is by using reflection of \(V\) to guarantee existence of sets with strong reflective properties. Reinhardt gives the following example:<ref>W. N. Reinhardt, "[https://canvas.eee.uci.edu/courses/8140/files/2966398/download?verifier=2cFyXQWmyjg7qKTxIbBasupeSVEkZQZJaE1yGkWz&download_frd=1 Remarks on reflection principles, large cardinals, and elementary embeddings]". In ''Axiomatic Set Theory, Part 2'' (1974), edited by T. Jech, ISBN 978-0-8218-9298-5. MathSciNet ID [https://mathscinet.ams.org/mathscinet/relay-station?mr=0401475 0401475].</ref>


: It may be helpful to give sine informal arguments illustrating the use of reflection principles.
: It may be helpful to give some informal arguments illustrating the use of reflection principles.
: The simplest is perhaps: the universe of sets is inaccessible (i.,e., satisfies the replacement axiom), ''therefore'' there is an inaccessible cardinal. This can be elaborated somewhat, as follows. Let \(\theta_\nu\) enumerate the inaccessible cardinals. By the same sort of reasoning, \(\theta_\nu\) is not bounded; the Cantor absolute \(\Omega\) (all ordinals) is an inaccessible above any proposed bound \(\beta\), ''therefore'' there is an inaccessible cardinal above \(\beta\). Clearly, then, there are \(\Omega\) inaccessibles above below \(\Omega\); ''therefore'' there is an inaccessible \(\kappa\) such that there are \(\kappa\) inaccessibles below it (i.e., \(\kappa=\theta_\kappa\)).
: The simplest is perhaps: the universe of sets is inaccessible (i.,e., satisfies the replacement axiom), ''therefore'' there is an inaccessible cardinal. This can be elaborated somewhat, as follows. Let \(\theta_\nu\) enumerate the inaccessible cardinals. By the same sort of reasoning, \(\theta_\nu\) is not bounded; the Cantor absolute \(\Omega\) (all ordinals) is an inaccessible above any proposed bound \(\beta\), ''therefore'' there is an inaccessible cardinal above \(\beta\). Clearly, then, there are \(\Omega\) inaccessibles above below \(\Omega\); ''therefore'' there is an inaccessible \(\kappa\) such that there are \(\kappa\) inaccessibles below it (i.e., \(\kappa=\theta_\kappa\)).