Reflection principle: Difference between revisions

No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 3:
==Levy-Montague reflection==
 
One of the most common reflection principles is the assertion that first-order properties of the universe of all sets are "reflected" down to a rank \(V_\alpha\) of the von Neumann hierarchy. Formally, for every formula \(\varphi\) and sequence of parameters \(x_0, x_1, \ldots, x_n\), there is some ordinal \(\alpha\) where \(x_0, x_1, \cdots, x_n \in V_\alpha\), and \(\varphi(x_0, x_1, \cdots, x_n)\) is true in \(V_\alpha\) iff it is really true. This is known as the Levy-Montague reflection principle.<ref>N. Barton, A. E. Caicedo, G. Fuchs, J. D. Hamkins, J. Reitz, R. Schindler, [https://arxiv.org/abs/1708.06669 Inner-model reflection principles] (2018). Accessed 4 September 2023.</ref> Because of the use of "\(\varphi(x_0, x_1, \cdots, x_n)\) is true" for an arbitrary first-order formula \(\phi\), but Tarski's undefinability theorem this may not be stated as a single first-order formula. This may be appear to be a formalization of Cantor's notion of Cantor's [[Absolute infinity|Absolute]], however there are ranks below which this principle holds. Each instance of this schema is actually provable in \(\mathrm{ZF}\), rather than being a candidate for a [[Large cardinal|large cardinal axiom]] or other new powerful axiom for set theory.
 
Azriel Levy proved (each instance of) the reflection principle over \(\mathrm{ZF}\).<ref>A. Kanamori, ''The Higher Infinite'', p.58. Springer Monographs in Mathematics (2003). ISBN 978-3-540-88866-6.</ref> Since the truth predicate for a certain class of \(\Sigma_n\)-formulae is itself \(\Sigma_n\), there is a club of cardinals \(\kappa\) so that each \(V_\kappa\) is a \(\Sigma_n\)-elementary substructure of \(V\)<ref name="Welch17">P. D. Welch, "[https://research-information.bris.ac.uk/ws/portalfiles/portal/132496875/CLMPS_Helsinki_2015.pdf Global Reflection Principles]", pp.8--10. In ''Logic, methodology and philosophy of science: proceedings of the fifteenth international congress''.</ref> - such cardinals are called \(\Sigma_n\)-[[Correct cardinal|correct]].
 
An even more general form of the reflection principle is as follows. Say a cumulative hierarchy is a family of sets \(W_\alpha\) indexed by ordinals so that, for all \(\alpha\), we have \(W_\alpha \subseteq W_{\alpha+1} \subseteq \mathcal{P}(W_\alpha)\); and for all limit ordinals \(\lambda\), \(W_\lambda = \bigcup_{\alpha < \lambda} W_\alpha\). Let \(W = \bigcup_{\alpha \in \mathrm{Ord}} W_\alpha\). Then, for every formula \(\varphi\), there are arbitrarily large \(\alpha\) so that, for all \(x_0, x_1, \cdots, x_n \in W_\alpha\), \(\varphi(x_0, x_1, \cdots, x_n)\) is true in \(W_\alpha\) iff it is true in \(W\). (Citation needed? I have seen this before too somewhere)
Line 18:
As a result, if it is assumed that \(V\) "should" satisfy reflection, if one wants to generate "true" large cardinal axioms, a good place to start is by using reflection of \(V\) to guarantee existence of sets with strong reflective properties. Reinhardt gives the following example:<ref>W. N. Reinhardt, "[https://canvas.eee.uci.edu/courses/8140/files/2966398/download?verifier=2cFyXQWmyjg7qKTxIbBasupeSVEkZQZJaE1yGkWz&download_frd=1 Remarks on reflection principles, large cardinals, and elementary embeddings]". In ''Axiomatic Set Theory, Part 2'' (1974), edited by T. Jech, ISBN 978-0-8218-9298-5. MathSciNet ID [https://mathscinet.ams.org/mathscinet/relay-station?mr=0401475 0401475].</ref>
 
: It may be helpful to give sinesome informal arguments illustrating the use of reflection principles.
: The simplest is perhaps: the universe of sets is inaccessible (i.,e., satisfies the replacement axiom), ''therefore'' there is an inaccessible cardinal. This can be elaborated somewhat, as follows. Let \(\theta_\nu\) enumerate the inaccessible cardinals. By the same sort of reasoning, \(\theta_\nu\) is not bounded; the Cantor absolute \(\Omega\) (all ordinals) is an inaccessible above any proposed bound \(\beta\), ''therefore'' there is an inaccessible cardinal above \(\beta\). Clearly, then, there are \(\Omega\) inaccessibles above below \(\Omega\); ''therefore'' there is an inaccessible \(\kappa\) such that there are \(\kappa\) inaccessibles below it (i.e., \(\kappa=\theta_\kappa\)).
 
Reflection may also be used to justify the axioms of existence of indescribable cardinals (soon following). Specifically, a stronger reflection principle may be obtained from Levy-Montague reflection by allowing use of \(\Pi^1_n\) formulae with second-order parameters. Then if the universe satisfies this property, in the style of the above argument, there is a \(V_\kappa\) that satisfies this reflection property, this \(\kappa\) is a \(\Pi^1_n\)-indescribable cardinal. In this way \(\Pi^1_n\) may be seen as a localization of the previous reflecting property to a \(V_\kappa\).<ref name="Welch17" />
Line 36:
 
==References==
<reflist />
160

edits