List of ordinals: Difference between revisions

From Apeirology Wiki
Jump to navigation Jump to search
Content added Content deleted
No edit summary
No edit summary
Line 25: Line 25:
* <nowiki>\( \Psi_{\mathbb{X}}^{\varepsilon_{\Upsilon+1}} \) where \( \mathbb{X} = (\omega^+; \textsf{P}_0; \epsilon; \epsilon; 0) \), the limit of Jan-Carl Stegert's second </nowiki>[[ordinal_collapsing_function|OCF]] using indescribable cardinals
* <nowiki>\( \Psi_{\mathbb{X}}^{\varepsilon_{\Upsilon+1}} \) where \( \mathbb{X} = (\omega^+; \textsf{P}_0; \epsilon; \epsilon; 0) \), the limit of Jan-Carl Stegert's second </nowiki>[[ordinal_collapsing_function|OCF]] using indescribable cardinals
* PTO of \( \Pi^1_2 \)-comprehension
* PTO of \( \Pi^1_2 \)-comprehension
* PTO of \( \text{Z}_{2} \)
* PTO of \( \text{Z}_{2} \) = PTO of \(\mathrm{ZFC}\) minus powerset
* PTO of \( \text{KP} + "\omega_1 \) exists \( " \)
* PTO of \( \text{KP} + "\omega_1 \) exists \( " \)
* PTO of \( \text{ZFC} \)
* PTO of \( \text{ZFC} \)
Line 31: Line 31:
* <nowiki>\( \omega^{\text{CK}}_{\omega} \), the least limit of admissible ordinals = the least height of a model of \( \Pi^1_1 \)-comprehension</nowiki>
* <nowiki>\( \omega^{\text{CK}}_{\omega} \), the least limit of admissible ordinals = the least height of a model of \( \Pi^1_1 \)-comprehension</nowiki>
* The least recursively inaccessible ordinal = the least height of a model of \( \textsf{KPi} \) or \( \Delta^1_2 \)-comprehension<ref name=":0">D. Madore, [http://www.madore.org/~david/math/ordinal-zoo.pdf A Zoo of Ordinals] (2017). Accessed 7 September 2022.</ref><sup>(p.3)</sup>
* The least recursively inaccessible ordinal = the least height of a model of \( \textsf{KPi} \) or \( \Delta^1_2 \)-comprehension<ref name=":0">D. Madore, [http://www.madore.org/~david/math/ordinal-zoo.pdf A Zoo of Ordinals] (2017). Accessed 7 September 2022.</ref><sup>(p.3)</sup>
* The least recursively Mahlo ordinall = the least doubly \( \Pi_2 \)-reflecting ordinal = the least height of a model of \( \textsf{KPM} \)<ref name=":0" /><sup>(p.3)</sup>
* The least recursively Mahlo ordinal = the least doubly \( \Pi_2 \)-reflecting ordinal = the least height of a model of \( \textsf{KPM} \)<ref name=":0" /><sup>(p.3)</sup>
* The least recursively hyper-Mahlo ordinal<ref name=":1">W. Richter, P. Aczel, [https://www.duo.uio.no/handle/10852/44063<nowiki> Inductive Definitions and Reflecting Properties of Admissible Ordinals] (1973, preprint, Universitetet i Oslo). Accessed 7 September 2022.</nowiki></ref><sup>(p.13)</sup>
* The least recursively hyper-Mahlo ordinal<ref name=":1">W. Richter, P. Aczel, [https://www.duo.uio.no/handle/10852/44063<nowiki> Inductive Definitions and Reflecting Properties of Admissible Ordinals] (1973, preprint, Universitetet i Oslo). Accessed 7 September 2022.</nowiki></ref><sup>(p.13)</sup>
* The least \( \Pi_n \)-reflecting ordinals, for \( 2<n<\omega \)<ref name=":1" />
* The least \( \Pi_n \)-reflecting ordinals, for \( 2<n<\omega \)<ref name=":1" />
Line 42: Line 42:
* The \( (\sigma^1_1)^n \)-reflecting ordinals for \( 1<n<\omega \)<!--iterated \( \Sigma^1_1 \)-reflection--><ref name="OrderOfReflection" /><sup>(p.20)</sup>
* The \( (\sigma^1_1)^n \)-reflecting ordinals for \( 1<n<\omega \)<!--iterated \( \Sigma^1_1 \)-reflection--><ref name="OrderOfReflection" /><sup>(p.20)</sup>
* The least \( (^++1) \)-stable ordinal<sup>(Is this strictly greater than previous entry?)</sup><ref name="OrderOfReflection" /><sup>(p.20)</sup>
* The least \( (^++1) \)-stable ordinal<sup>(Is this strictly greater than previous entry?)</sup><ref name="OrderOfReflection" /><sup>(p.20)</sup>
* The least (next recursively inaccessible ordinal)-stable ordinal
* The least (next recursively Mahlo ordinal)-stable ordinal
* The least (next \( \Pi_n \)-reflecting ordinal)-stable ordnal, for \( 2<n<\omega \)
* The least doubly \( (+1) \)-stable ordinal<ref name=":0" /><sup>(p.4)</sup>
* The least doubly \( (+1) \)-stable ordinal<ref name=":0" /><sup>(p.4)</sup>
* The least \(\omega\)-ply stable ordinal = the least ordinal stable up to a nonprojectible ordinal
* The least \(\omega\)-ply stable ordinal = the least ordinal stable up to a nonprojectible ordinal
* The least nonprojectible ordinal<ref name=":0" /><sup>(p.5)</sup> = the least ordinal \( \Pi_2 \)-reflecting on the ordinals stable up to it<ref name=":2">E. Kranakis, [https://www.sciencedirect.com/science/article/pii/0003484382900225<nowiki> Reflection and Partition Properties of Admissible Ordinals] (1980). Accessed 7 September 2022.</nowiki></ref><sup>(p.218)</sup>
* The least nonprojectible ordinal<ref name=":0" /><sup>(p.5)</sup> = the least ordinal \( \Pi_2 \)-reflecting on the ordinals stable up to it = the least limit of \(\omega\)-ply stable ordinals<ref name=":2">E. Kranakis, [https://www.sciencedirect.com/science/article/pii/0003484382900225<nowiki> Reflection and Partition Properties of Admissible Ordinals] (1980). Accessed 7 September 2022.</nowiki></ref><sup>(p.218)</sup>
* The least \( \Sigma_2 \)-admissible ordinal<ref name=":0" /><sup>(pp.5-6)</sup> = least ordinal \( \Pi_3 \)-reflecting on the ordinals stable up to it<ref name=":2" /><sup>(p.221)</sup>
* The least \( \Sigma_2 \)-admissible ordinal<ref name=":0" /><sup>(pp.5-6)</sup> = least ordinal \( \Pi_3 \)-reflecting on the ordinals stable up to it<ref name=":2" /><sup>(p.221)</sup>
* HIGHER STABILITY STUFF GOES HERE<sup>(sort out)</sup>
* HIGHER STABILITY STUFF GOES HERE<sup>(sort out)</sup>
Line 56: Line 59:
* Least \(\beta\) where \(L_\beta\) starts a chain of \(\Sigma_3\)-elementary substructures <ref name="Welch2010Draft" />
* Least \(\beta\) where \(L_\beta\) starts a chain of \(\Sigma_3\)-elementary substructures <ref name="Welch2010Draft" />
* The smallest [[gap_ordinals|gap ordinal]]<ref name="Gaps">W. Marek, M. Srebrny, [https://www.sciencedirect.com/science/article/pii/0003484374900059 Gaps in the Constructible Universe] (1973). Accessed 7 September 2022.</ref>
* The smallest [[gap_ordinals|gap ordinal]]<ref name="Gaps">W. Marek, M. Srebrny, [https://www.sciencedirect.com/science/article/pii/0003484374900059 Gaps in the Constructible Universe] (1973). Accessed 7 September 2022.</ref>
*<!-- I'd like to put "least a so that some ordinal is undefinable in L_a", which is the same as the "least a so that L_b < L_a for some b < a", which is obviously bigger than the least gap ordinal. I don't know exactly where it lies, though. -->
* Least start of a gap in the constructible universe of length 2<ref name="Gaps" />
* Least start of a gap in the constructible universe of length 2<ref name="Gaps" />
* Least \( \beta \) that starts a gap of length \( \beta \)<ref name="Gaps" />
* Least \( \beta \) that starts a gap of length \( \beta \)<ref name="Gaps" />
Line 70: Line 74:
* [[omega_1|\( \Omega \)]], the smallest [[uncountable]] ordinal
* [[omega_1|\( \Omega \)]], the smallest [[uncountable]] ordinal
* \( I \), the smallest [[inaccessible_cardinal|inaccessible cardinal]]
* \( I \), the smallest [[inaccessible_cardinal|inaccessible cardinal]]
* \( M \), the smallest [[mahlo_cardinal|mahlo cardinal]]
* \( M \), the smallest [[Mahlo cardinal]]
* \( K \), the smallest [[weakly_compact_cardinal|weakly compact cardinal]]
* \( K \), the smallest [[weakly_compact_cardinal|weakly compact cardinal]]



Revision as of 11:55, 28 August 2023

Countable ordinals

In this list we assume there is a transitive model of ZFC. The \(\psi\) is Extended Buchholz unless specified.

  • 0, the smallest ordinal
  • 1, the first successor ordinal
  • \( \omega \), the first limit ordinal
  • \( \omega^{2} \), the second infinite additive principal ordinal
  • \( \omega^{3} \)
  • \( \omega^{\omega} \)
  • \( \psi_{0}(\Omega) = \varphi(1,0) = \varepsilon_{0} \), the PTO of PA and ACA0(sort out page)
  • \( \psi_{0}(\Omega^{2}) = \varphi(2,0) = \zeta_{0} \)(decide if own page)
  • \( \psi_{0}(\Omega^{\omega}) = \varphi(\omega,0) \), the second infinite primitive recursively principal ordinal
  • \( \psi_{0}(\Omega^{\Omega}) = \varphi(1,0,0) = \Gamma_{0} \), the Feferman-Schutte ordinal and the PTO of ATR0
  • \( \psi_{0}(\Omega^{\Omega^{2}}) = \varphi(1,0,0,0) \), the Ackermann Ordinal(decide if keep)
  • \( \psi_{0}(\Omega^{\Omega^{\omega}}) = \varphi\begin{pmatrix}1 \\ \omega\end{pmatrix} \), the SVO (Small Veblen ordinal)
  • \( \psi_{0}(\Omega^{\Omega^{\Omega}}) \), the LVO (Large Veblen ordinal)
  • \( \psi_{0}(\Omega_{2}) \), the BHO (Bachmann-Howard ordinal)
  • \( \psi_{0}(\Omega_{\omega}) \), the BO (Buchholz ordinal) and the PTO of \( \Pi^1_1 \)-comprehension
  • \( \psi_{0}(\varepsilon_{\Omega_{\omega} + 1}) \), the TFBO (Takeuti-Feferman-Buchholz ordinal) and the PTO of \( \Pi^1_1 \)-comprehension with bar induction
  • \( \psi_{0}(\Omega_\Omega) \), sometimes known as Bird's ordinal
  • \( \psi_{0}(\Omega_{\Omega_{\dots}}) \), the EBO (Extended Buchholz ordinal) and the PTO of \( \Pi^1_1 \)-transfinite recursion
  • \( \psi_{\Omega}(\varepsilon_{\chi_1(0)+1}) \), the PTO of KPi or \( \Delta^1_2 \)-comprehension with transfinite induction (in Rathjen's Mahlo OCF, also applies to the one below)
  • \( \psi_{\Omega}(\psi_{\chi_{\varepsilon_{M+1}}(0)}(0)) \), the PTO of KPM
  • \( \Psi^{0}_{\Omega}(\varepsilon_{K+1}) \), the PTO of KP+\(\Pi_{3}\)-refl. (in Rathjen's weakly compact OCF)
  • \( \psi_\Omega(\varepsilon_{\mathbb{K}+1}) \), the PTO of KP with a \( \Pi_{\mathbb{N}}\)-refl. universe under ZF + V = L
  • \( \Psi_{\mathbb{X}}^{\varepsilon_{\Upsilon+1}} \) where \( \mathbb{X} = (\omega^+; \textsf{P}_0; \epsilon; \epsilon; 0) \), the limit of Jan-Carl Stegert's second OCF using indescribable cardinals
  • PTO of \( \Pi^1_2 \)-comprehension
  • PTO of \( \text{Z}_{2} \) = PTO of \(\mathrm{ZFC}\) minus powerset
  • PTO of \( \text{KP} + "\omega_1 \) exists \( " \)
  • PTO of \( \text{ZFC} \)
  • \( \omega^{\text{CK}}_{1} \), the Church-Kleene ordinal, i.e. the least ordinal which is not recursive and the second admissible ordinal
  • \( \omega^{\text{CK}}_{\omega} \), the least limit of admissible ordinals = the least height of a model of \( \Pi^1_1 \)-comprehension
  • The least recursively inaccessible ordinal = the least height of a model of \( \textsf{KPi} \) or \( \Delta^1_2 \)-comprehension[1](p.3)
  • The least recursively Mahlo ordinal = the least doubly \( \Pi_2 \)-reflecting ordinal = the least height of a model of \( \textsf{KPM} \)[1](p.3)
  • The least recursively hyper-Mahlo ordinal[2](p.13)
  • The least \( \Pi_n \)-reflecting ordinals, for \( 2<n<\omega \)[2]
  • The least \( (+1) \)-stable ordinal[1](p.4)
  • The least \( (+\alpha) \)-stable ordinal, for small \(\alpha\)
  • The least \( (\cdot 2) \)-stable ordinal
  • The least \( (^+) \)-stable ordinal = the least \( \Pi^1_1 \)-reflecting ordinal[1](p.4)
  • The least ordinal that is \( \Pi^1_1 \)-reflecting on the \( \Pi^1_1 \)-reflecting ordinals[3]
  • The least \( \Sigma^1_1 \)-reflecting ordinal = the least non-Gandy ordinal[3](pp.3,9)[1]
  • The \( (\sigma^1_1)^n \)-reflecting ordinals for \( 1<n<\omega \)[3](p.20)
  • The least \( (^++1) \)-stable ordinal(Is this strictly greater than previous entry?)[3](p.20)
  • The least (next recursively inaccessible ordinal)-stable ordinal
  • The least (next recursively Mahlo ordinal)-stable ordinal
  • The least (next \( \Pi_n \)-reflecting ordinal)-stable ordnal, for \( 2<n<\omega \)
  • The least doubly \( (+1) \)-stable ordinal[1](p.4)
  • The least \(\omega\)-ply stable ordinal = the least ordinal stable up to a nonprojectible ordinal
  • The least nonprojectible ordinal[1](p.5) = the least ordinal \( \Pi_2 \)-reflecting on the ordinals stable up to it = the least limit of \(\omega\)-ply stable ordinals[4](p.218)
  • The least \( \Sigma_2 \)-admissible ordinal[1](pp.5-6) = least ordinal \( \Pi_3 \)-reflecting on the ordinals stable up to it[4](p.221)
  • HIGHER STABILITY STUFF GOES HERE(sort out)
  • Some Welch stuff here
  • Infinite time Turing machine ordinals
    • \( \lambda \), the supremum of all writable ordinals = the least ordinal stable up to \( \zeta \) ordinal
    • \( \gamma \), the supremum of all clockable ordinals, equal to \( \lambda \)
    • \( \zeta \), the supremum of all eventually writable ordinals = the least \( \Sigma_2 \)-extendible ordinal
    • \( \Sigma \), the supremum of all accidentally writable ordinals = the least target of \( \Sigma_2 \)-stability
  • Welch's \(E_0\)-ordinals [5]
  • Least \(\beta\) where \(L_\beta\) starts a chain of \(\Sigma_3\)-elementary substructures [5]
  • The smallest gap ordinal[6]
  • Least start of a gap in the constructible universe of length 2[6]
  • Least \( \beta \) that starts a gap of length \( \beta \)[6]
  • Least \( \beta \) that starts gap of length \( \beta^\beta \)[6]
  • Least \( \beta \) that starts gap of length \( \beta^+ \) = least height of model of KP+"\( \omega_1 \) exists".[1](p.6) [7]
  • Least start of third-order gap = least height of model of \( ZFC^- \)+"\( \beth_1 \) exists"[1](p.6)
  • Least height of model of ZFC[1](p.6)
  • Least stable ordinal[1](p.6)[8](p.9), this is a limit of gap ordinals[9]
  • Least stable ordinal that's also during a gap - height of least \( \beta_2 \)-model of \( Z_2 \)[9]
  • The least non-analytical ordinal. This is the least \( \alpha \) such that \( L_\alpha \prec L_{\omega_1} \).[8](p.8)

Uncountable ordinals

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 D. Madore, A Zoo of Ordinals (2017). Accessed 7 September 2022.
  2. 2.0 2.1 W. Richter, P. Aczel, [https://www.duo.uio.no/handle/10852/44063 Inductive Definitions and Reflecting Properties of Admissible Ordinals] (1973, preprint, Universitetet i Oslo). Accessed 7 September 2022.
  3. 3.0 3.1 3.2 3.3 J. P. Aguilera, The Order of Reflection (2019, arxiv preprint). Accessed 7 September 2022.
  4. 4.0 4.1 E. Kranakis, [https://www.sciencedirect.com/science/article/pii/0003484382900225 Reflection and Partition Properties of Admissible Ordinals] (1980). Accessed 7 September 2022.
  5. 5.0 5.1 P. D. Welch, Weak Systems of Determinacy and Arithmetical Quasi-Inductive Definitions (April 2010 draft). Accessed 11 January 2023.
  6. 6.0 6.1 6.2 6.3 W. Marek, M. Srebrny, Gaps in the Constructible Universe (1973). Accessed 7 September 2022.
  7. T. Arai, A Sneak Preview of Proof Theory of Ordinals (1997, preprint, p.17). Accessed 7 September 2022.
  8. 8.0 8.1 W. Marek, K. Rasmussen, Spectrum of L
  9. 9.0 9.1 W. Marek, Stable sets, a characterization of \( \beta_2 \)-models of full second order arithmetic and some related facts (1974, Fundamenta Mathematicae 82(2), pp.175-189). Accessed 7 September 2022.