Axiom of infinity: Difference between revisions

From Apeirology Wiki
Jump to navigation Jump to search
(Created page with "The axiom of infinity is a common mathematical axiom included in theories such as Kripke-Platek set theory or ZFC. It asserts that there exists an inductive set - i.e. a set \(x\) so that \(0 \in x\) and, if \(n \in x\), then \(n+1 \in x\). By using \(\Delta_0\)-separation, this implies that \(\omega\) exists. The axiom of infinity, obviously, drastically increases the strength of set theory, since else one is not at all able to define Ordinal|ordinal...")
 
(Undo revision 686 by Cobsonwabag (talk))
Tag: Undo
 
(One intermediate revision by one other user not shown)
(No difference)

Latest revision as of 16:51, 25 March 2024

The axiom of infinity is a common mathematical axiom included in theories such as Kripke-Platek set theory or ZFC. It asserts that there exists an inductive set - i.e. a set \(x\) so that \(0 \in x\) and, if \(n \in x\), then \(n+1 \in x\). By using \(\Delta_0\)-separation, this implies that \(\omega\) exists. The axiom of infinity, obviously, drastically increases the strength of set theory, since else one is not at all able to define ordinals. For example, \(V_\omega\), the set of hereditarily finite sets, is a model of ZFC minus the axiom of infinity.