Axiom of determinacy: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
No edit summary
No edit summary
Line 3: Line 3:
Note that the determinacy of every topological game whose payoff set is closed, or even Borel, is already provable in \(\mathrm{ZFC}\). Sufficient large cardinal axioms imply that every game with projective, or even quasi-projective, payoff set is determined, while still remaining consistent with the axiom of choice.
Note that the determinacy of every topological game whose payoff set is closed, or even Borel, is already provable in \(\mathrm{ZFC}\). Sufficient large cardinal axioms imply that every game with projective, or even quasi-projective, payoff set is determined, while still remaining consistent with the axiom of choice.


By a theorem of Woodin, \(\mathrm{ZF} + \mathrm{AD}\) is equiconsistent with \(\mathrm{ZFC} + \mathrm{PD}\), where \(\mathrm{PD}\) is the assertion that every topological game with projective payoff set is determined, which is equiconsistent \(\mathrm{ZFC}\) augmented by the existence of infinitely many Woodin cardinals. Since Woodin cardinals are [[Mahlo cardinal|strongly Mahlo]], if the axiom of determinacy is consistent, then so is the existence of infinitely many Mahlo cardinals. Furthermore, let \(L(\mathbb{R})\) be the smallest [[Inner model theory|inner model]] containing both all [[Ordinal|ordinals]] and all real numbers. Then the existence of both infinitely many Woodin cardinals and a [[measurable]] cardinal above them implies that \(L(\mathbb{R})\) does not satisfy the axiom of choice but, rather the axiom of determinacy. Therefore, \(\mathrm{ZFC} + \mathrm{AD}^{L(\mathbb{R})}\) is actually stronger than \(\mathrm{ZF} + \mathrm{AD}^V\), consistency-wise.
By a theorem of Woodin, \(\mathrm{ZF} + \mathrm{AD}\) is equiconsistent with \(\mathrm{ZFC} + \mathrm{PD}\), where \(\mathrm{PD}\) is the assertion that every topological game with projective payoff set is determined, which is equiconsistent \(\mathrm{ZFC}\) augmented by the existence of infinitely many Woodin cardinals. Since Woodin cardinals are [[Mahlo cardinal|strongly Mahlo]], if the axiom of determinacy is consistent, then so is the existence of infinitely many Mahlo cardinals. Furthermore, let \(L(\mathbb{R})\) be the smallest [[Inner model theory|inner model]] containing both all [[Ordinal|ordinals]] and all real numbers. Then the existence of both infinitely many Woodin cardinals and a [[measurable]] cardinal above them implies that \(L(\mathbb{R})\) does not satisfy the axiom of choice but, rather the axiom of determinacy.


Lightface and boldface analytic determinacy are actually significantly weaker than the existence of a Woodin cardinal, which is significantly weaker than \(\mathbf{\Pi}^1_n\)-determinacy for \(n > 1\). In particular, lightface analytic determinacy is equiconsistent with the existence of [[Zero sharp|\(0^\sharp\)]], and boldface analytic determinacy is equiconsistent with the existence of [[Sharp|\(r^\sharp\)]] for all real numbers \(r\).
Lightface and boldface analytic determinacy are actually significantly weaker than the existence of a Woodin cardinal, which is significantly weaker than \(\mathbf{\Pi}^1_n\)-determinacy for \(n > 1\). In particular, lightface analytic determinacy is equiconsistent with the existence of [[Zero sharp|\(0^\sharp\)]], and boldface analytic determinacy is equiconsistent with the existence of [[Sharp|\(r^\sharp\)]] for all real numbers \(r\).